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Abstract. A new thermodynamic model is proposed in order to account for the high spin↔ low spin conver-
sion in metal-organic polymers. The model, based on the idea that the spin conversion occurs in interacting
domains of like-spin metal ions, allows to explain most of the important features of various types of spin
conversion. The sine qua non condition of the existence of spin transitions with hysteresis is obtained. In
the case of very large cooperativity, the model predicts unusual behaviour of the spin conversion system
due to a low-temperature metastable high spin state. Existence of such a state is interesting in the context
of the light induced excited spin state trapping recently observed in some ferrous compounds. The model
is applied to interpret the spin transition in polycrystalline ferrous polymer [Fe1−yCuy(Htrz)2trz](BF4)
with y = 0.00, 0.01 and 0.10, detected by differential scanning calorimetry, optical reflectivity and electron
paramagnetic resonance. The domain size and the interaction energy between the domains are estimated
as, respectively, n = 11 and Γ = 2.010 kJ mol−1 for the y = 0 compound. As the copper content is grow-
ing, n and Γ tend to decrease, resulting in transformations of the shape of hysteresis loop which becomes
less steep, narrows and shifts to lower temperatures. The electron paramagnetic resonance gives further
evidence of the presence of like-spin domains.

PACS. 65.50.+m Thermodynamic properties and entropy – 78.40.Me Organic compounds and polymers
– 76.30.Fc Iron group (3d) ions and impurities (Ti–Cu)

1 Introduction

In octahedral ligand fields, transition metal ions with d4,
d5, d6 or d7 configurations adopt either a high spin (HS)
or a low spin (LS) electronic arrangement, according to
whether the cubic crystal-field splitting 10Dq is lower
or higher than the mean spin pairing energy P . When
these two energies are comparable, a spin conversion can
be induced under the influence of temperature, pressure,
or by irradiating with light. For the purposes of the ad-
vanced technology, most interesting are spin transition
compounds showing bistability behaviour on the micro-
scopic scale [1], resulting in abrupt spin transitions with a
large thermal hysteresis. This explains the increasing in-
terest to the Fe2+–4–R–1, 2, 4-triazole compounds during
the last decade [2]. Owing to an associated thermochromic
effect, such compounds can be used as molecular-based
memory devices and displays.

The cooperative character of the spin transitions has
been discussed by several authors in terms of electron-
phonon coupling, cooperative Jahn-Teller interaction be-
tween the HS ions or elastic interaction between ions in
different spin states [3].
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If cooperativity between spin-changing complexes is
weak, gradual spin conversion is observed over an ex-
tended temperature range. In contrast, in systems with
strong cooperativity abrupt conversion may occur, often
accompanied by hysteresis and structural changes. In the
latter case the term “spin transition” is used.

The spin conversion is likely to start from a growth
of nucleation centres of a new spin state, probably lo-
calised at defect sites, grain boundaries and on the sur-
face of crystallites. Strong cooperative interactions favour
the growing of domains of like-spin ions from these nu-
clei, resulting in an abrupt transition. In contrast, weak
cooperative interactions impede the nucleation centres to
achieve a critical size required for the development of do-
mains [4]. The existence of like-spin domains has been
clearly demonstrated by grinding and doping spin tran-
sition compounds [5,6]. The more gradual conversion ob-
served has been related to decrease of domain size caused
by crystal defects.

Thermodynamic analysis provides a very convenient
way for characterising the spin conversion, as far the lat-
ter is accompanied by a change of entropy and volume
which both increase in the HS state. Thus, from the
thermodynamic point of view, the driving force of the
spin conversion is the difference in the Gibbs free energy
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between the two spin states involved. The analysis of this
difference allows to predict the relative stability of these
states and evaluate the fundamental physical characteris-
tics of the spin conversion.

In this work, a new thermodynamic model is devel-
oped, taking into account the existence of interacting LS
and HS domains. The model allows not only to explain
most of the important features of spin conversion, but also
it predicts for the first time the existence in some cases of
metastable high spin states in the low-temperature range.
Of a particular interest may be the possibility of popu-
lating such states by the light-induced excited spin state
trapping (LIESST).

For definiteness, we consider the case of ferrous ions,
though the model can be applied to any spin-changing
ion. The interacting domain model is further employed
to interpret the spin transition with hysteresis in poly-
mer ferrous compound [Fe1−yCuy(Htrz)2trz](BF4) with
y = 0.00, 0.01 and 0.10. The predictions of the thermo-
dynamic model are compared to the experimental results
of differential scanning calorimetry (DSC), optical trans-
mission and electron paramagnetic resonance (EPR) data.
Computer simulations demonstrate that both the transi-
tion temperatures in cooling and warming modes and the
slope of the hysteresis curve are correlated with the do-
main size. The influence of interdomain interaction energy
is also studied, showing that the hysteresis loop vanishes
not only for weak interactions, but also in the case of very
strong interactions.

2 Interacting domain model

2.1 Theoretical description

As has been shown by Zimmermann and König [7], first-
principle microscopic LS–HS conversion models in the
Bragg-Williams or the molecular field approximations
yield free-energy expressions explicitly taking into ac-
count interactions between HS and LS ions. These expres-
sions are analogous to the one suggested by Slichter and
Drickamer [8] in the framework of a phenomenological
regular solution model of pressure-induced spin conver-
sion. However, the latter authors consider randomly dis-
tributed HS or LS ions and not HS and LS domains. A
thermodynamic model of spin conversion taking into ac-
count domains of like-spin ions has first been put forward
by Sorai and Seki [9], however, they have only consid-
ered independent domains. This hypothesis is in contra-
diction with experimental studies showing that interaction
between domains should take a prominent part in deter-
mining the behaviour of spin conversion systems [10]. The
interacting domain case has been outlined by Purcell and
Edwards [11].

The temperature-induced spin conversion being usu-
ally observed at constant pressure p and not at constant
volume V , the appropriate thermodynamic potential is the
Gibbs free energy (note however that in the solid state the
pV term which distinguishes it from the Helmholtz free
energy can usually be neglected).

We consider a one-mole sample of a metal-organic (fer-
rous) polymer in which the HS and LS molecules form
linear domain chains of average length of l domains with
exactly n molecules per domain. Only pairwise interac-
tions between nearest neighbouring molecules are taken
into account. At a temperature T , the sample contains
DH HS and DL LS domains, the total number of domains
per mole being D = DH+DL = N/n, whereN is the Avo-
gadro’s number. The Gibbs free energy of such a sample
is given by

GT = G0 +Gmix +Gdomains +Ginterchain (1)

where G0 is the contribution from isolated molecules or
domains, Gmix is related to the mixing entropy Smix,
Gdomains arises from molecule contacts inside the like-spin
domains as well as from interdomain interactions on the
chains, and Ginterchain is due to molecule interactions be-
tween adjacent chains.

Let x = DH/D be the HS molar fraction varying in
the range ]0, 1[. G0 can be can be written as

G0 = N [xγH + (1− x)γL] , (2)

where the subscripts H and L refer to the low spin and high
spin states, respectively, and γH and γL are one-molecule
Gibbs energies.

In the actual case the mixing entropy is determined
by the number of ways of distributing DH HS and DL LS
domains within the assembly of D domains. In the Stirling
approximation,

Gmix = −TSmix = kBT ln
(
DDH

H DDL
L /DD

)
, (3)

or, as DH = Dx and DL = D(1− x),

Gmix =
NkB

n
T [x lnx+ (1− x) ln(1− x)] . (4)

The third term on the right-hand side of (1) can be written
as

Gdomains = Gintra +Ginter, (5)

where Gintra and Ginter account, respectively, for the con-
tributions of intradomain contacts and interdomain con-
tacts on the polymer chains. As noticed in [11], the in-
teraction energies between the corresponding ions inside
the like-spin domains and between two domains may be
quite different. So, we denote these energies, respectively,
as γi

HH, γi
LL and γd

HH, γd
LL, γd

HL. The number of molecule
contacts within a linear domain being n− 1, we get

Gintra = N
(

1− 1
n

)[
xγi

HH + (1− x)γi
LL

]
. (6)

In calculating the contribution from interdomain inter-
actions, Purcell and Edwards [10] introduce an effective
number of molecule pair contacts at the domain interface.
However, as far as these authors neglect interchain inter-
actions, at the actual stage this number must be taken
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as one (in our approach these interactions are included in
Ginterchain). For a polymer chain containing on an average
dH HS and dL LS domains with dH +dL = d, the numbers
of different interdomain contacts iij are

iHH =
dH(dH − 1)

d
, iLL =

dL(dL − 1)
d

, iHL =
2dHdL

d
·

(7)

The numbers Iij of such interdomain contacts in the whole
one-mole sample are obtained by multiplying the corre-
sponding iij by the total number of chains, D/d. Thus,

Ginter =
N
n

[
x

(
x− 1

d

)
γd

HH + (1− x)

×
(

1− x− 1
d

)
γd

LL + 2x(1− x)γd
HL

]
. (8)

Finally, Ginterchain can be calculated by introducing a
number of neighbouring chains, v (v = 2 and v ≥ 3 for
a two-dimensional and a three-dimensional structure, re-
spectively). We assume that the interchain molecular in-
teraction energies, noted as γc

HH, γc
LL and γc

HL, are the
same for the N (1 − 2/nd) non-terminating and 2N/nd
terminating molecules having, respectively, v and v+1 in-
terchain contacts. The frequencies of the HH, LL and HL
contacts being proportional, respectively, to x2, (1 − x)2

and 2x(1− x), we get

Ginterchain =
1
2
N
(
v +

2
nd

)
×
[
x2γc

HH + (1− x)2γc
LL + 2x(1− x)γc

HL

]
.

(9)

Taking into account (2, 4, 6, 8, 9) results in

GT (x) = xGH + (1− x)GL

+ rT [x lnx+ (1− x) ln(1− x)] + Γx(1− x),
(10)

where

GH

N = γH +
(

1− 1
n

)
γi

HH +
1
n

(
1− 1

d

)
γd

HH

+
(
v

2
+

1
nd

)
γc

HH,

GL

N = γL +
(

1− 1
n

)
γi

LL +
1
n

(
1− 1

d

)
γd

LL

+
(
v

2
+

1
nd

)
γc

LL,

Γ

N =
1
n

(
2γd

HL − γd
HH − γd

LL

)
+
(
v

2
+

1
nd

)
× (2γc

HL − γc
HH − γc

LL) ,

r =
NkB

n
·

(11)

Taking in (10) GL as the origin of the energies,

GT (x) = x∆H + T{r[x lnx+ (1− x) ln(1− x)]− x∆S}
+ Γx(1− x), (12)

where ∆H and ∆S are the changes of the molar en-
thalpy and entropy associated with the LS to HS conver-
sion (∆G = ∆H − T∆S). In order to somewhat simplify
the subsequent analysis, we assume Γ to be independent
of temperature. At the particular temperature defined by
∆G = 0,

T1/2 =
∆H

∆S
, (13)

the GT (x) graph is symmetric with respect to x = 1/2.
As far as the Gibbs energies for isolated molecules can

be assumed to be much greater than the intermolecular in-
teraction energies, GH and GL in the first approximation
are independent of n. In contrast, Γ and the correspond-
ing “transition cooperativity” defined as Γ/2RT1/2 [11],
may well depend on the domain size. For very long chains,
with nd� 1, the contribution to Γ from interchain inter-
actions becomes independent on n. On the other hand, if
one neglects interchain interactions, Γ will decrease with
increasing n, unless the interdomain interaction energies,
in turn, increase with n.

Stable or metastable equilibrium states of the system
correspond to the minima of GT (x), while its maxima de-
scribe unstable equilibrium. The x-values corresponding
to the extrema of GT (x) are obtained from the cancella-
tion of the function G′T (x) given by

G′T (x) = ∆H + Γ (1− 2x)− T
(
∆S + r ln

1− x
x

)
·

(14)

This yields the implicit equation

ln
1− x
x

= −2Γ
rT

x+
∆H − T∆S + Γ

rT
· (15)

The mathematical form of equation (14) is quite similar
to that obtained in previous studies [8,11], however, the
physical meaning of the parameters involved, see equa-
tion (11), is somewhat different.

For x→ 0 G′T (x)→ −∞ and for x→ 1 G′T (x)→∞,
so that equation (15) always has at least one solution.
However, we are particularly interested in the cases of ex-
istence of more that one solution of this equation, since
such cases result in bistability of the thermodynamic sys-
tem which can manifest itself in the phenomenon of hys-
teresis. Note that in the present model metastable states,
strictly speaking, have infinitely long lifetimes, since ther-
mal fluctuations and tunneling through the free energy
barrier are not taking into account. We will go back over
this problem in the discussion (Sect. 5.1).

2.2 Graphical solution

The equation (15) can be solved by a graphical method.
With this aim, we consider a plane (u, v) in which
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Table 1. Characterisation of the regions I to VI by inequalities
on Γ .

Region Inequalities on Γ

I 0 < Γ < ∆H and 0 < Γ < 2rT1/2

II ∆H < Γ < 2rT1/2

III 2rT1/2 < Γ < ∆H

IV 2rT1/2 < Γ < ∆H coth(∆S/2r)

and ∆H < Γ < ∆H coth(∆S/2r)

V Γ > ∆H coth(∆S/2r)

VI Γ < 0

the left-hand side and the right-hand side of equation (15)
are represented, respectively, by a curve (C) of equa-
tion v = ln[(1 − u)/u] and a straight line (DT ) of slope
−2Γ/rT . One can easily show that at any temperature
(DT ) is passing through a fixed point P of coordinates
uP = 1

2 +∆H/2Γ and vP = −∆S/r. Then, provided that
the quantities ∆H, ∆S and Γ are known, the x-values
corresponding to the extrema of GT (x) can be determined
from an intersection of (C) and (DT ). The number of so-
lutions will depend on the position of P .

The LS to HS conversion is always accompanied by an
increase in entropy, ∆S > 0. Indeed, in the HS state the
electronic entropy is higher than in the LS state, because
of greater spin degeneracy, and the vibrational entropy
also is higher in the HS state, since weakening of metal-
to-ligand bonds, accompanying the increase of ionic radius
of the spin-changing ion, results in a higher density of vi-
brational states in comparison with the LS state. There-
fore, only the cases of P located in the negative semi-plane
v < 0 are physically meaningful.

Different types of behaviour of the thermodynamic sys-
tem in question can be classified in accordance with the
position of P inside the regions delimited by the curve (C)
v = ln[(1 − u)/u], its inflexion tangent v = −4u + 2, its
asymptote u = 1 and the straight line u = 1/2.

So, the negative semi-plane is subdivided into six re-
gions numbered from I to VI, as shown in Figure 1.
Expressing u and v via the thermodynamic parameters,
each region can be characterised by inequalities on Γ , see
Table 1.

From Figure 1 the following conclusions can be drawn.

(i) In the regions I and VI at any temperature there is
only one intersection point between (C) and (DT ).

(ii) In the regions II and V (DT ) can have three inter-
section points with (C), case (a), provided its slope
is sufficiently steep, 0 < T < TB in the region II or
0 < T < TA in the region V. The case (b), that of
(DT ) tangent to (C) for T = TB in the region II and
T = TA in the region V, separates these temperature
ranges from those of existence of only one solution,
case (c), T > TB,A. Note that in the regions II and
V the abscissa of the tangency point lies above and
below 0.5, respectively.

(iii) In the region III (DT ) is tangent to (C) at two distinct
temperatures, T = TB and T = TA, respectively,

cases (b) and (d). So, the implicit equation (15) has
three different solutions inside the temperature range
TB < T < TA.

(iv) In the region IV the situation is more complex,
since there are three different temperatures, T =
TB2 , TB1 , TA, for which (DT ) is tangent to (C),
cases (b), (d), and (f). Therefore, equation (15)
has three different solutions within two temperature
ranges, 0 < T < TB2 and TB1 < T < TA, cases (a)
and (e).

2.3 Analytical approach

In order to discriminate between the roots of (15) corre-
sponding to minima and maxima of GT (x), it is necessary
to inspect its second derivative,

G′′T (x) =
2Γ (x2 − x+ rT/2Γ )

x(1− x)
, (16)

in the range ]0, 1[.
For Γ < 0 G′′T is always positive. Neither can it be

negative if Γ > 0 and T ≥ Γ/2r, so that the implicit
equation (15) always has only one solution in these cases.

More interesting is the case of Γ > 0 and T < Γ/2r,
since the equation G′′T (x) = 0 has then two different roots,

x− =
(

1−
√
∆
)
/2 < 1/2 and x+ =

(
1 +
√
∆
)
/2 > 1/2,

where ∆ = 1−2rT/Γ , so that the x2−x+rT/2Γ polynom
is negative within the range x− < x < x+ and positive
elsewhere. Therefore, G′T (x) has a maximum at x− and a
minimum at x+. In this case, the equation (15) has three
different solutions if G′T (x−) > 0 and G′T (x+) < 0, two
different solutions if either G′T (x−) = 0 or G′T (x+) = 0,
and a single solution otherwise.

In order to determine the signs of the extrema of
G′T (x), T is expressed in terms of x− or x+ from the con-
dition that G′′T (x) = 0, as follows:

T = 2Γ (x± − x2
±)/r. (17)

Inserting this relation in (14) yields a new one-argument
function

G′T (x) = ∆H + Γ (1− 2x)− 2Γ (x− x2)

×
(
∆S

r
+ ln

1− x
x

)
, (18)

where x = x− or x = x+, respectively for 0 < x < 1/2
and 1/2 < x < 1. G′(x) represents the locus of extrema of
G′T (x) at different temperatures.

The corresponding derivative,

G′′(x) = −2Γ (1− 2x)
(
∆S

r
+ ln

1− x
x

)
, (19)

is positive within the range of 1/2 < x < 1
2 [1+th(∆S/2r)]

and negative elsewhere, see Table 2. Therefore,G′(x) takes
a minimum value of ∆H − Γ∆S/2r at x = 1/2 and
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Fig. 1. Geometrical analysis of the number of intersection points, i, between the curve v = ln[(1 − u)/u] (C, solid) and the
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Fig. 2. Derivative of the molar Gibbs free energy versus the HS molar fraction. The values of ∆S are 24 Jmol−1 K
−1

in all

the regions, except for the region II, where 12 Jmol−1 K
−1

. The values of the interaction energy Γ are as follows (in kJ mol−1):
region I, 1.79 ; region II, 4.78 ; region III, 2.99 ; region IV, 3.95 ; region V, 5.38 and region VI, −2.99. The dashed curves are
the G′(x) functions, see equation (18), representing the loci of extrema of G′T (x).

a maximum value of ∆H − Γ th(∆S/2r) at xf = 1
2 [1 +

th(∆S/2r)]. Note also that for x = xf the temperature
dependence of G′T (x) vanishes, so that the set of G′T (x)-

curves for different temperatures has a common point of
intersection of coordinates, xf , yf = ∆H − Γ th(∆S/2r),
see Figure 2.
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Table 2. Variations of G′(x) in the case Γ > 0 and T < Γ/2r. The T -values shown refer to the corresponding values of x− and
x+ defined in equation (17).

‖ x− ‖ x+ ‖

x 0 1/2
1

2
[1 + tanh(∆S/2r)] 1

G′′(x) − 0 + 0 −
G′(x) ∆H + Γ ↘ ∆H − Γ∆S/2r ↗ ∆H − Γ tanh(∆S/2r) ↘ ∆H − Γ
T 0 ↗ Γ/2r ↘ Γ/[2r coth2(∆S/2r)] ↘ 0

Table 3. Signs of limiting and extreme values of G′(x) in the different regions.

Region I Region II Region III Region IV Region V

sign (∆H + Γ ) + + + + +

sign (∆H − Γ∆S/2r) + + − − −
sign [∆H − Γ tanh(∆S/2r)] + + + + −

sign (∆H − Γ ) + − + − −

The limiting values of G′(x) for x→ 0 and x→ 1 are
∆H + Γ and ∆H − Γ , respectively. The signs of these
values, shown in Table 3, unambiguously settle the signs
of G′T (x−) and G′T (x+) in the six different regions.

Thus, the conclusions (i) to (iv) enumerated to the end
of the previous section can be easily verified.

3 Computer simulations

In order to illustrate the behaviour of the thermodynamic
system of interacting domains, we have carried out a com-
puter analysis of the Gibbs free energy GT (x) and of its
derivative G′T (x) versus the HS molar fraction x, as well
as of x versus temperature T for each of the six regions
specified in Section 2.2. The x(T ) graphs calculated from
equation (15) by expressing T as a function of x,

T =
∆H + Γ (1− 2x)

∆S + r ln
1− x
x

, (20)

include both positive and negative temperatures. Bran-
ches shown by dashed lines correspond to physically non-
accessible states of unstable equilibrium that is to maxima
of GT (x).

In all the simulations given in this section, the value
of ∆H = 3.60 kJ mol−1 has been chosen in a somewhat
arbitrary way. The ∆S- and Γ -values have been adjusted
such as to satisfy the inequalities quoted in the Table 1
for the respective regions.

3.1 Absence of domains

At this stage, the number n of ions per domain has been
fixed to one (individual ions). The G′T (x), GT (x) and x(T )
graphs for the six regions are shown respectively in Fig-
ures 2 to 4.

3.1.1 Region I

In this region G′(x) does not go through zero, see the
dashed curve for this region in Figure 2, therefore GT (x)
has a single minimum. As the temperature increases, the
position of the minimum gradually shifts from x ≈ 0 to
the right, reaching 0.5 for T = T1/2 and approaching 1 at
higher temperatures.

The corresponding x(T ) graph shows a gradual spin
conversion. Note that in this case the spin equilibrium
term is most appropriate.

3.1.2 Region II

One can see that G′(x) takes a zero value corresponding
to a minimum of G′T (x) in its tangency point with the x
axis at T = TB = 57.4 K. Below this temperature GT (x)
has two minima, the lower one for x close to 0 and the
higher one for x close to 1, corresponding, respectively
to a stable LS state and to a metastable HS state. As T
increases, the first minimum shifts to the right while the
second one first shifts to the left and vanishes at T = TB.
For T > TB GT (x) has a single minimum which gradually
shifts to higher x-values, so that the system is enriched in
HS ions.

In the corresponding x(T ) graph, TB represents a bi-
furcation point. If at low temperature the system is in the
LS state, only a usual, gradual and reversible spin con-
version is obtained. On the other hand, if the probability
of “jumping” over or tunnelling through the free energy
barrier is weak, the system can initially be trapped in the
metastable HS state. In this case an irreversible HS to LS
transition would occur, in addition, at T = TB.

3.1.3 Region III

In this region,G′(x) vanishes in two points, corresponding
the first to a maximum and the second to a minimum of
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Fig. 3. Molar Gibbs free energy versus the HS molar fraction in the regions I to VI (see the legend of Fig. 2 for the thermodynamic
parameters used).

G′T (x), respectively at T = TA = 154.5 K and T = TB =
141.4 K.

Inside the TB < T < TA range GT has two minima,
the “LS” one for x closer to 0 and the “HS” one for x
closer to 1. At T = T1/2 the two minima are symmetrical

with respect to x = 0.5 and have exactly the same energy.
For TB < T < T1/2 the “LS” minimum corresponds to
a stable state and the “HS” one to a metastable state,
while for T1/2 < T < TA the situation is inverted. When
the system is passing through T1/2 in the warming mode,
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Fig. 4. HS molar fraction versus temperature in the regions I to VI (see the legend of Fig. 2 for the thermodynamic parameters
used).

the “HS” minimum becomes thermodynamically stable.
If the free energy barrier between the two minima were
“transparent”, the system would undergo the spin tran-
sition at this temperature. In the opposite case of totally
impenetrable barrier, the system remains trapped in the

now metastable “LS” minimum, until T = TA is reached.
At the latter temperature, the barrier between the two
minima disappears, so that the LS to HS transition finally
takes place. Similarly, in the cooling mode, below T1/2 the
system can remain in the metastable “HS” minimum until
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T = TB, at which temperature it undergoes the HS to LS
transition.

Outside the TB < T < TA range GT (x) has only one
minimum corresponding to a system rich in LS ions below
TB and in HS ions above TA.

The x(T ) graph displays a spin transition with hystere-
sis with transition temperatures TB and TA, respectively
in the cooling and warming modes.

3.1.4 Region IV

In this region the situation is more complex, since G′(x)
has three intersection points with the x-axis. The first one
corresponds to a maximum of G′T (x) at TA = 168.4 K and
the second and third to minima of G′T (x) at TB1 = 74.9 K
and TB2 = 24.7 K. Thus, there are two distinct temper-
ature ranges, TB1 < T < TA and 0 ≤ T < TB2 , in which
GT (x) has two minima. In the first range, the behaviour
of the thermodynamic system is quite analogous to that in
the region III, vide ultra. In the warming mode the LS to
HS transition occurs at TA, while in the cooling mode the
HS state persists until the temperature is lowered down
to TB1 .

In contrast, in the 0 ≤ T < TB2 range, the minimum
at x ≈ 1 always corresponds to a metastable HS state,
whereas the minimum at x ≈ 0 is the stable LS state. If the
system is initially in the HS state, a HS to LS transition
will be observed at T = TB2 , just as in region II. The
corresponding x(T ) curve exhibits a spin transition with
hysteresis that can be preceded by an irreversible HS to
LS transition at TB2 .

3.1.5 Region V

Here the situation is inverted with respect to the region II,
namely, G′(x) has one zero value corresponding to a max-
imum of G′T (x) at T = TA = 192.5 K. From the GT (x)
curves a somewhat unusual behaviour of the thermody-
namic system is anticipated. At T = 70 K the LS mini-
mum is lower in energy than the HS minimum and corre-
sponds to a stable state. In raising the temperature, the
energy difference between the two minima reduces and
vanishes at T = T1/2 = 150 K. At still higher temper-
atures the HS minimum is lower in energy than the LS
minimum but the system remains in the metastable LS
state until T = TA. At this temperature the LS min-
imum disappears and the LS to HS transition occurs.
In contrast, in lowering the temperature, the system is
“frozen” in the HS state, since the HS minimum never
vanishes.

Otherwise, if the system initially founds itself at low
temperature in the metastable HS state, no spin transition
at all will be observed.

The x(T ) graph illustrates the two possible types of
behaviour depending on the initial state of the spin sys-
tem: an irreversible LS to HS spin transition at T = TA
or absence of any spin transition. Note that the two bista-
bilities observed in the previous region collapse on the

boundary between the regions IV and V, that is, for
Γ = ∆H coth(∆S/2r).

3.1.6 Region VI

Γ being negative in this region, G′T (x) monotonously in-
creases with x. The GT (x) curves show a single minimum
which smoothly shifts to the right as the temperature is
increased. The x(T ) graph exhibits a very gradual spin
conversion covering a large temperature range.

By inspecting the x(T ) graphs in the different regions,
Figure 4, one general feature of the spin conversion can
be deduced. Namely, all these graphs have a horizontal
asymptote for a value of x defined by vanishing of the
denominator in equation (20). Thus, the graphs always
consist of two separate branches only discontinuous transi-
tions being possible between them. Moreover, the asymp-
tote prevents the spin system of reaching the 100% HS
state at high temperatures, so that, strictly speaking, a
spin conversion can never be complete.

3.2 Influence of the domain size

Now we shall demonstrate the influence of the domain size
on the hysteresis cycle. We choose the region III, in which
the bistability of the thermodynamic system manifests it-
self in the simplest way.

It has been established in Section 2.1, equation (11)
that the parameter Γ and the transition cooperativity may
depend on the domain size.

The x(T ) graphs corresponding to the case of Γ de-
creasing as n−1 are displayed in Figure 5 for different n
values (we remind the reader that such a dependence is
expected if interchain interactions can be neglected and
interdomain interaction energies are independent of n). In
this case, the hysteresis loop narrows with the increase in
the domain size and disappears for a certain n value. On
the other hand, the spin transition becomes more abrupt
and more complete.

Figure 6 shows the behaviour of the spin transition
system for Γ independent on n. This type of behaviour
can be expected in metal-organic polymers with strong
interchain interactions. Another possibility is that of in-
terdomain interaction energies increasing with the domain
size which may be the case if these energies are rather of
elastic nature. In this instance, if the HS and LS ions are
randomly distributed on the polymer chains (n = 1), a
gradual spin conversion takes place. With the advent of
even very small domains (of a size of a few molecules) a
hysteresis loop emerges and broadens in a spectacular way
as n increases. In addition, it becomes square-shaped, so
that the spin transition is now very abrupt in both the
warming and cooling modes. Practically no residual HS
fraction at lower temperature or residual LS fraction at
higher temperature is observed, so that the spin transi-
tion is almost complete.

Namely, one can see from the latter figure that with the
chosen thermodynamic parameters the bistability occurs
only due to the development of domains.
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4 Experimental section

Calorimetric measurements were made on the molecular
compound [Fe1−yCuy(Htrz)2trz](BF4) for y = 0.00, 0.01
and 0.10, with a Perkin-Elmer DSC7 Differential Scanning
Calorimeter (DSC) under the following conditions:

(i) temperature range between 310 and 390 K,
(ii) heating and cooling rates of 2 K/min,
(iii) sample mass of 4 mg,
(iv) four independent measurements for each composi-

tion.

The random errors in the temperatures as well as those
in the heat effects derived from the DSC curves were ob-
tained by the Student’s method with 95% threshold of
reliability. The systematic errors are estimated as 0.2 K
and 2% in temperatures and heat effects, respectively. For
all the compounds, the DSC curves, see Figure 7, show
a positive peak in the warming mode and a negative one
in the cooling mode at a lower temperature, confirming a
thermally-induced Fe2+ spin transition with hysteresis.

All the three samples show a marked change of colour
from pink in the LS state of Fe2+ to white in the HS state
of this ion. The thermochromic effect has been followed
with a simple optical transmission device [12] through the
temperature range of the spin transition1. By definition,
the spin transition temperatures in the warming and cool-
ing modes, T1/2 ↗ and T1/2 ↙, correspond to x = 0.5.

1 The authors are grateful to L. Sommier from the Labora-
tory of O. Kahn (Laboratoire des Sciences Moléculaires, Insti-
tut de Chimie de la Matière Condensée de Bordeaux, 33608
Pessac Cedex, France) for carrying out the optical measure-
ments.

Table 4. Experimental (optical detection and DSC) val-
ues of the spin transition temperatures in the warming
(T1/2 ↗) and cooling (T1/2 ↙) modes and model parameters
in [Fe1−yCuy(Htrz)2trz](BF4) for different y values determined
from DSC measurements (∆HDSC, ∆SDSC) and computer fits
(∆Hcalc., ∆Scalc., Γcalc., ncalc.). The numbers in brackets are
errors in the last digits.

y 0.00 0.01 0.10

T1/2 ↗ (K) DSC 371(1) 356(2) 353(2)

T1/2 ↗ (K) optical 372(1) 357(1) 351(2)

T1/2 ↙ (K) DSC 343(2) 336(1) 333(2)

T1/2 ↙ (K) optical 343(1) 336(1) 334(2)

∆HDSC (kJ mol−1) 26.6(3) 15.9(4) 14.5(4)

∆Hcalc. (kJ mol−1) 26.50(6) 16.32(6) 14.96(6)

∆SDSC (Jmol−1 K
−1

) 72(1) 45(1) 41(1)

∆Scalc. (Jmol−1 K
−1

) 74.2(2) 47.0(2) 43.7(2)

Γcalc. (kJ mol−1) 2.01(6) 1.76(6) 1.69(6)

ncalc. 11 7 6

The transition temperatures deduced from the DSC curves
are in fairly good agreement with those obtained by op-
tical reflectivity, see Table 4. The enthalpy variations (in
the warming mode) determined from the DSC are also
given in Table 4. The corresponding entropy variations
are calculated as ∆S = ∆H/T1/2 ↗.

The experimental hysteresis curves deduced from the
optical reflectivity data have been fitted to by theoretical
x(T ) graphs, as shown in Figure 8. The fitting results in
the interaction energies and numbers of ions per domain
shown in Table 4.

The electron paramagnetic resonance (EPR) spectra
were recorded with an X-band (9.3 GHz) Varian V4502
spectrometer equipped with a Varian E257 variable tem-
perature accessory operating in the range 88 to 573 K.
Figure 9 shows the EPR spectra in the temperature range
of the spin transition for 10% Cu/Fe-containing samples
of [Fe(Htrz)2trz)](BF4) and of an analogous compound
[Fe(NH2trz)3](NO3)2. In the warming mode, as far as the
temperature remains lower than T1/2 ↗, (the LS state
of Fe2+ ions) the EPR spectra in both systems exhibit
a signal from Cu2+ ions with poorly resolved hyperfine
splitting. Above T1/2 ↗ (the HS state of Fe2+) a se-
vere change occurs in the aspect of the EPR spectrum
of [Fe0.9Cu0.1(Htrz)2(trz)](BF4) and the spectrum totally
disappears in the case of [Fe0.9Cu0.1(NH2trz)3](NO3)2. In
the cooling mode, as the temperature decreases below
T1/2 ↙, the initial EPR spectra shapes are approximately
restored.

In the context of the present study, of most interest
are the EPR manifestations of the domain structure which
will be discussed in Section 5.3.
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5 Discussion

5.1 Theoretical model

The thermodynamic models taking into account non-
interacting domains of like-spin ions cannot explain hys-
teresis effects [9]. On the other hand, the regular solution
model that does not take into consideration the existence
of domains, cannot describe the square-shaped hysteresis
loops as sometimes experimentally observed. In contrast,
the interacting domain model explains in quite a satisfac-
tory way the behaviour of spin conversion systems in the

cases of both gradual and abrupt transitions with hystere-
sis. The interacting domain model shows that abruptness
and completeness of the spin transition rapidly grow with
the domain size, see Figures 5 and 6. These predictions
are in conformity with the experimental observations (see
next section).

In the framework of the regular solution model of spin
conversion [8], Slichter and Drickamer have suggested the
inequality Γ > 2RT1/2 to be the necessary and sufficient
condition of the existence of hysteresis. Yet, it is clear from
the present model that this condition must be modified.
Indeed, the point P defined in Section 2.2 belongs to the
regions III or IV, if and only if the following inequalities
hold:

2rT1/2 < Γ < ∆H coth(∆S/2r). (21)

In the n = 1 case, tantamount to the regular solution
model from the mathematical standpoint, r must be re-
placed by the perfect gas constant R = NkB, so that one
gets

2RT1/2 < Γ < ∆H coth(∆S/2R). (22)

It can be concluded that there exists not only a lower
limit but also an upper limit of the Γ values, there-
fore, the hysteresis loop vanishes for both weak and very
strong interactions between domains (or individual ions).
In the latter case, if thermal fluctuations and tunnelling
through the free energy barrier are negligible, the thermo-
dynamic system is bound to indefinitely remain trapped
in a metastable HS state (region V).

The sine qua non condition of hysteresis is the exis-
tence of a maximum of the GT (x) function, separating two
distinct minima and constituting an energy barrier usu-
ally considered as impenetrable [13]. On the other hand,
if one takes into consideration the possibility for certain
ions to get sufficient energy to overcome this barrier, the
hysteresis loop will be narrowed and made less abrupt. As
the probability of thermally activated “jumping” over the
barrier is expected to be temperature-dependent, such a
mechanism would bring about a pronounced asymmetry
of the hysteresis loop that would become more abrupt in
the cooling mode than in the warming mode. However, the
experimental hysteresis curve in the [Fe(Htrz)2trz](BF4)
compound does not show such an asymmetry, see Fig-
ure 8a. This gives one more evidence of the fact that the
spin transition occurs in domains of like spins. Indeed,
the probability for a whole domain to overcome the en-
ergy barrier between the local and the global free-energy
minima must very rapidly decrease with the increasing
number of ions per domain.

The possibility of “inhabitual” irreversible spin transi-
tions in the regions II, IV and V constitutes perhaps the
most interesting result of the present analysis.

In the regions II and IV, if at low temperature the
system initially is in the metastable HS state, an irre-
versible HS to LS transition will occur at a temperature
below the onset of a usual, reversible LS to HS transi-
tion. If such excited HS state can effectively be populated
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Fig. 9. EPR spectra in the spin transition region in the warming (T ↗) and cooling (T ↙) modes for the
[Fe0.9Cu0.1(Htrz)2(trz)](BF4) (a) and [Fe0.9Cu0.1(NH2trz)3](NO3)2 (b) polymeric compounds.

by light, the LIESST effect would be observed. The ex-
perimental observation of this effect has been reported in
some spin transition compounds [14,15]. One might won-
der why the possibility of the low-temperature metastable
HS state had not been discussed in the previous publi-
cations concerned with the thermodynamic models of the
spin conversion, e.g. [8,11], since it can be inferred in a
straightforward way from equation (14). Most probably,
the answer is that the possible experimental application
of such a state, the LIESST effect, had not yet been known
at that time.

In the region V, as discussed above, only an irre-
versible spin transition can take place. Note that the
HS state trapping has been experimentally observed in
Fe(stpy)4(NCS)2 compound by inducing a trans-cis lig-
and phototransformation [16].

We have already mentioned that in the present
model metastable states have infinitely long (geologi-
cal) lifetimes. In the experimental LIESST studies of
[Fe(ptz)6](BF4)2 compound the lifetime of the metastable
HS states at 10 K is about 40 days [17]. Only at tem-
peratures as high as ca. 50 K the thermal relaxation
back to the stable LS state begins to set in. In the spin-
crossover solid solution [FexCo1−x(btr)2(NCS)2]H2O rel-
atively short and strongly temperature-dependent decay
times of the metastable HS state are observed [18], how-
ever, no data has been reported for temperatures lower
than 45 K. On the other hand, very slow relaxation
of the metastable low-temperature HS state is found in
[Fe(PM− BiA)2](NCS)2 compound, namely, at 50 K no
obvious decrease of the HS fraction at all is detected
on the time scale of several thousands of seconds. The
low-temperature lifetime limit can be estimated as about
1 year in this case [19]. Thus, it seems that the infinite
lifetime approximation is not in contradiction with exper-
imental LIESST observations, at least, at sufficiently low
temperatures.

This extraordinary stability of the low-temperature
HS state can be related to the difference ∆r in the av-
erage iron-to-ligand bond length between the two spin

states [17]. More precisely, as ∆r is increased, the pre-
exponential (tunneling) factor in the spin conversion rate
expression decreases very rapidly. For [Fe(ptz)6](BF4)2

∆r ≈ 0.18 Å, while for [Fe(PM− BiA)2](NCS)2 an un-
usually large value of ∆r ≈ 0.27 Å has been found.

5.2 Effect of copper on the spin transition
in [Fe(Htrz)2trz](BF4)

The occurrence of abrupt transition with hysteresis is re-
lated to cooperativity. Although its mechanism is not yet
fully understood, it is commonly accepted that coopera-
tive interactions become extremely important when the
active spin-changing sites are covalently linked by con-
jugated ligands [2]. The EXAFS data suggest for the
[Fe(Htrz)2trz](BF4) molecular compound a basic struc-
ture of a linear chain in which two adjacent ferrous
ions are triply bridged by two triazole ligands and one
deprotonated triozalato ligand through the 1, 2 nitro-
gen positions [20]. So the large interaction energy, Γ =
2.010 kJ mol−1, deduced for the y = 0.00 compound, see
Table 4, is not surprising.

It is well known that in undoped compounds, the co-
operativity manifests itself at longer distances than in
doped compounds. In the first case, the size of the like-
spin domains is likely to be limited by crystal imperfec-
tions and local stresses [21]. Foreign ions introduced into
a spin transition polymer constitute an additional natural
boundary between domains, thus further reducing their
size and consequently reducing the steepness of the spin
conversion. Indeed, in [Fe1−yCuy(Htrz)2trz](BF4) the av-
erage domain size decreases from n = 11 for y = 0.00 to
n = 6 for y = 0.10, see Table 4. The experimental data
presented in Table 4 show a tendency of Γ to increase as
the size of domains is increased. This is in contrast to the
behaviour expected for negligible interchain interactions,
see equation (11) and Figure 5. Note that recent Wide-
Angle X-ray Scattering (WAXS) data suggest the possi-
bility of connecting the polymer chains through hydrogen
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bonds between the BF−4 anions [22]. However, an increase
of Γ with the increase of n can only be explained by a
relatively strong increase in the interdomain interaction
energies.

Another effect of doping the spin compound is a pro-
nounced shift of the transition temperatures. It can be
understood on the basis of the effective ionic radii. The
octahedral radius of the Cu2+ ion, 0.73 Å, is larger than
the corresponding radii of Fe2+ in the LS state, 0.63 Å,
so, the presence of copper seems to favour the HS state
of Fe2+ at the expense of its LS state. Consequently, one
needs less warming to bring about the LS to HS transition
and more cooling to produce the HS to LS back transition,
so that all the characteristic transition temperatures in
the copper-containing compounds are lowered. One more
manifestation of the copper-favoured HS state of Fe2+ ions
is the more important “residual paramagnetism” in the LS
state of these ions, see Figure 8. The residual molar HS
fraction just before the abrupt stage of the LS to HS tran-
sition can be evaluated from the best-fit hysteresis curves
as 0.08, 0.142 and 0.174, respectively for the y = 0.00, 0.01
and 0.10 compounds.

5.3 EPR manifestations of the presence of domains

A more detailed inspection of the EPR spectra in
[Fe0.9Cu0.1(Htrz)2(trz)](BF4) in the spin transition re-
gion, see Figure 9a, reveals the presence of two superposed
components, a narrower one and a broader one. One might
suggest that what actually takes place in the course of the
spin transition is not a broadening of the spectral features,
but rather a decrease of the amplitude of the Cu2+ EPR
spectrum corresponding to the LS state of Fe2+ (the nar-
row component) which is gradually replaced by a broader
component corresponding to the HS state of Fe2+. Such
a behaviour can be explained by the fact that the Cu2+

ions are located inside LS or HS Fe2+ ion domains. In this
event, most of Cu2+ ions are predominantly surrounded
either with LS or with HS Fe2+ ions.

This behaviour is still more pronounced in the
[Fe0.9Cu0.1(NH2trz)3](NO3)2 compound, see Figure 9b, in
which case the Cu2+ EPR spectra in the HS state of Fe2+

are broadened beyond the possibility of observation at the
X-band. It is obvious from Figure 9b that in the spin tran-
sition region the EPR spectra of Cu2+ gradually disap-
pear, without any appreciable broadening.

On the other hand, if in the spin transition region the
LS and HS Fe2+ ions were dispersed at random, a grad-
ual transformation of the EPR spectra of a paramagnetic
probe would be observed, which is clearly not the case.
Thus, the EPR data confirm a coexistence of LS and HS
Fe2+ domains in the spin transition region.

Note that still more spectacular manifestations
of the presence of like-spin domains have been ob-
served for ferrous compounds presenting well-resolved
EPR spectra of Mn2+ ions, [Fe(2-pic)3]Cl2C2H5OH and
Fe(PM–PEA)2(NCS)2 [23,24]. In these cases the EPR
spectra in the transition region have been shown to con-
sist of superpositions of two distinct signals corresponding

to the Mn2+ ions surrounded with either only HS or only
LS Fe2+ ions. Similar conclusions have been reached by
nuclear magnetic resonance technique [25].

Another interesting implication of the EPR data in
the [Fe0.9Cu0.1(Htrz)2(trz)](BF4) polymer concerns the
effective g-value of the Cu2+ signal in the HS state of
Fe2+, geff = 2.05, which is quite different from the mean
g-value of the Cu2+ spectrum in the LS state of Fe2+,
〈g〉 = 1

3 (gx + gy + gz) ≈ 2.15. This distinction suggests
that the LS to HS conversion is accompanied by a struc-
tural transition (twisting of polymer chains), as has been
corroborated by the WAXS measurements [22]. Such a
transformation results in an enhanced cooperativity and
contributes to stabilising the new spin state. This finding
is in agreement with the general idea of discontinuous spin
transitions being associated with a crystallographic phase
change [26].

6 Conclusion

Introducing the hypothesis that spin-changing ions in
a metal-organic polymer form interacting like-spin do-
mains of equal size results in a generalisation of the
Slichter-Drickamer model. Computer simulations demon-
strate that the position and shape of spin conversion
curves are very sensitive to the thermodynamic param-
eters ∆H, ∆S and Γ . Namely, concerning the hysteresis
loop, its abruptness, completeness and width may trans-
form themselves in a very different way with the domain
size, n, depending on the form of Γ (n). Besides, it has been
shown that the hysteresis loop vanishes not only for weak
interactions but also for very strong interactions between
domains or individual ions.

The low-temperature bistability due to a strong coop-
erativity of spin-changing units has been examined here
for the first time. This bistability may result in two dif-
ferent kinds of irreversible spin transitions that occur if
the spin system at low temperatures remains trapped in
a metastable HS state. The possibility of optically pop-
ulating such states by the LIESST effect is particularly
interesting since it may result in very long decay times.

The model can be readily generalised to two or three-
dimensional lattices by introducing the interaction energy
in a phenomenological way.

Experimental spin transition studies, carried out
for copper-containing ferrous polymer compound
[Fe1−yCuy (Htrz)2trz](BF4) by DSC and optical trans-
mission have been convincingly fitted to by the interacting
domain model. In particular, a correlation has been found
between Γ and n suggesting that the interdomain inter-
action energies increase with the increase in the domain
size.

The EPR data give further evidence of coexistence of
LS and HS Fe2+ domains in the spin transition region. On
can see from the above analysis that the EPR technique in
certain cases may be sensitive not only to the coordination
polyhedron of a paramagnetic ion but also to the structure
of more remote environment.
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In its present form, the interacting domain model is
certainly oversimplified. Its further developments must
take into account a possibility of different sizes of LS and
HS domains and, more generally, a possibility of statis-
tical distributions of the domain sizes. Besides, tempera-
ture dependence of the domain size and interdomain in-
teraction energies can be taken into account, which may
prove necessary especially in the case of a spin conversion
spread over a large temperature range. The dependence
of the transition cooperativity on the domain size may
be described in detail in the framework of a microscopic
theory.

Finally, we note that the interacting domain model
can be extended, mutatis mutandis, to first order phase
transitions.

The authors are indebted to O. Kahn for synthesis of the spin
transition polymers and valuable discussions.
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